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Abstract—Real time analysis of fine granularity of log data
can help people gain personalized insights on business. For
example, real time analysis of e-commerce log data will help us
learn recent changes of browsing and shopping behavior of
specific customers, which enables us to provide personalized
recommendations. To accomplish such analysis, log data should
have been loaded quickly into data warehouse without loss. This
paper proposes a no loss staging and fast loading solution for log
data. Based on open sourced tools such as Kafka, HDFS, and
Spark, we have designed and implemented an entity fiber based
log data partitioning and staging method, as well as a parallel
loading algorithm. Our scheme achieves a data staging
performance of around 390,000 records/s, and a data loading
performance of around 160,000 records/s.
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L INTRODUCTION TO ENTITY CENTRIC REALTIME

ANALYSIS OF LOG DATA

Log data contains valuable information for decision making.

Timely and efficiently analyzing of log data can bring
significant business value. For example, by analyzing log data
of servers and applications, we can infer the root causes of
failures. By analyzing log data of e-commerce sites, we can
learn recent changes in browsing and purchasing behaviors of
specific customers. Based on that, e-commerce sites can
provide more personalized recommendations [1].

In above application scenarios, people need to perform real-
time analyzing work on log data around some specific entities
(customers, products, servers, applications etc.). Entity centric
analysis requires that the finest granularity of log data should
be stored for later process. In the meantime, real-time
analyzing requires that the log data should be loaded into data
warehouse as fast as possible. In summary, the two challenges
that we face when doing real-time entity centric analysis of log
data include: (1) Detailed data should not be lost. (2) And the
data should be loaded as fast as possible.

To tackle the two challenges, we propose an entity fiber
based partitioning and staging method, as well as a parallel
loading algorithm for log data. We have implemented our
scheme based on open sourced tools such as Kafka, HDFS
(Hadoop Distributed File System) and Spark. The experiment
results show that our proposal achieves a good data staging and
data loading performance.

The paper is organized as follows. Section 2 introduces the
entity fiber based data partitioning and staging method, as well
as the parallel loading algorithm for log data. Section 3
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describes our experiment setting and experiment results with
our analysis. Section 4 presents some related works, and the
final section concludes the whole paper.

II.  NoO Loss STAGING AND FAST LOADING OF LOG DATA

A. The Definition of Entity Fiber

A tuple of log data records some information of one event
about some entities. For example, in log data of an e-commerce
site, each tuple describes an event about some specific
customer and some specific product. In this scenario, customer
and product are entities. Customer is a primary entity, and
product is a secondary entity. Our discussion will center around
primary entities, however, the treatment of secondary entities is
similar to the way we process primary entities.

We organized entities into clusters, which are called entity
fibers (fiber in short). The mapping from entity to fiber can
have some sematic meaning, or we can simply use some Hash
or Range function to map entities to fibers. For example, in
mobile communication applications, the call detail records
could be partitioned according to calling intensity of different
areas to which mobile phones are registered (it is called
registration location of a mobile phone). For some areas with
high frequency of calling such as down town area of some city,
users of such area will be split into several fibers. For some
rural area with rare calls, mobile users of several such areas
could be combined into one fiber.
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<Userl,...>
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Block22
Fig. 1. Entity fibers and log data partitioning

Note: Each line of log data represent one log record.

After entities are split into entity fibers, log records are split
according to entity fibers. As depicted in figure 1, user 1 and
user 2 belong to fiberl, user 3 and user 4 belong to fiber2.
Based on that, log records about userl and user2 will go to the
same partition - partition 1, and log records about user3 and
user4 will go to another partition - partition 2. Log data of each
partition is organized in blocks. For example, block 11 and
block 12, ... contain log records about userl and user2 but
occur at different time. In the following text, when there is no
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confusion, we also use entity fibers to refer to corresponding
log partitions as well as their data blocks. Entity fiber based log
data partitioning, has taken skewness of log data into account.
It will mitigate the effect of receiving unbalanced amount of
data by different loaders (described later).

In big data applications, people store the same data to
several replicas (typically 3 replicas) to achieve fault tolerance.
We can store primary entity based partitioning of log data in
two of the replicas, and store secondary entity based
partitioning of log data in the third replica. Primary entity
oriented query will be routed to primary entity based partitions,
while secondary entity oriented query will be routed to
secondary entity based partitions.

B. The Whole Architecure of our proposed Log Data Staging
and Loading System

Figure 2 shows the whole architecture of our prototype with
the shaded parts designed and implemented by ourselves. The
basic flow of log data staging and loading is as follows: (1) The
log data adapter reads log data coming from upstream data
streams or log data stored in files, and hands it over to the log
data partitioner. (2) The log data partitioner partitions the log
data according to entity fibers. Log data of different fiber is
written into different partitions of Kafka message queue for
temporary landing. We can run more than one instance of
partitioner according to throughput requirements. (3) Log data
loaders run on Data Nodes of HDFS. They pull log data from
different Kafka partitions. Each loader is responsible for
pulling and loading of log data of several fibers.

Log Stream
Adapter Partitioner
LogFile - = 7
Kafka partition | Partition2 PartitionN
HDEFS Loaderl Loader2 /
Data Nodes Name Node
Zookeeper (meta server), Spark(Query)

Fig. 2. No loss staging and fast loading of log data

Each loader runs in a multithread mode. Each thread pulls
log data of one entity fiber. When the volume of log data of
one loader reaches the threshold of one data block (256MB).
The loader will organize the data in a proper format and write it
into HDFS, and register some meta data in the meta data store.

One of meta data tables - the Block table records meta data
about each data blocks, i.e. on which Data Node the primary
replica of the block is saved, the start timestamp, end
timestamp of the log data of the block, number of records of
the block etc.

The goal of organizing log data of several fibers into one
block, is to cope with data skewness among different fibers,
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and to reduce memory consumption. If we prepare different
buffer for each fiber, and only when some buffer accumulates
enough data for one block, we write the block into disks, then
the loaders will consume much more memory when each Data
Node is responsible for handling of 100s of fibers. In that case,
we need to prepare 100s of buffers, before any of the buffers
accumulate enough data, we cannot write any data into disks.

C. Partitioning and Staging of Log Data

After the log data adapter receives log data from upstream
data streams or log data stored in log files, and hands the data
over to the log data partitioner. The log data partitioner
dispatches the log records according to the mapping from
entity to fibers, and writes log records of different entity fibers
to different partitions in the Kafka message queue. The only
work of the log data partitioner is to map and dispatch each
log record, thus it can achieve a very high throughput.

Kafka is an open sourced distributed message system. It
was originally developed by the LinkedIn Company, and
became an Apache project later [2]. Compared to traditional
message systems, Kafka has several nice properties: (1) it is a
fully distributed system and it is easy to scale out to process
very large volume of log data. (2) Kafka provides high
throughput for both publishing and subscribing. And it
supports multi-subscribers and automatically balances the
consumers during failures. (3) Kafka persists messages into
disks, to guarantees reliability of the message system. Data will
not be lost. In our system, Kafka’s task is to temporarily and
reliably store log data. We have implemented a data partitioner
in front of Kafka, and the partitioning will get the log data
ready for later parallel loading.

By mapping entities to entity fibers, and partitioning the log
data according to entity fibers, we can speed up entity centric
queries. When we query log records about some specific
entities, we only need to scan data blocks containing those
entity fibers. In addition, queries usually contain some time
range conditions, then the scanning can confine to a few data
blocks. However, when people don’t designate entity condition
in a query, we need to scan more data blocks.

D. Parallel Loading of Log Data and Registration of Meta
Data

Loaders, running on Data Nodes of HDFS in parallel, load
the log data into HDFS. On each Data Node of HDFS, a loader
is responsible for loading of log data of several fibers. There is
a mapping from fiber to loader. It is stored in a table in meta
data store, with a name of Mapping. The mapping is
periodically readjusted (please refer to sub section E
“discussion” of this section).

In general, when the number of entities reaches millions or
billions, we can group them into around 10,000 fibers. On a
typical cluster of 100 nodes, each Data Node will be
responsible for handling of log data of 10s to 100s fibers. Fine
granularity of partitioning of fiber is in favor of balancing loads
among Data Nodes.

Each loader launches several threads according to the
number of fibers that it is responsible for. Each thread will pull



data from one of partitions of the Kafka message queue. Each
partition of Kafka contains log records of one fiber.

When the total volume of the data accumulated by the
threads reach a threshold of one data block (256MB), the
loader organizes the temporary data of each thread into a data
block. Inside each fiber, the log records are sorted by
timestamp; then the fibers are concatenated together, and saved
into HDFS using the Parquet format (please refer to figure 3).

Katka Loader] main thread
Gaziiiionl fhread 11 Organizing data blocks, write
becion hread 12 | blocks into isk
Loader2 main thread
thread 21 Organizing data blocks, write
PartitionN thread 22 blocks into disk

Fig. 3. Parallel processing in log data loading

Note: In Kafka, log records belonging to one fiber will be stored in one
message queue partition. An elliptical frame represents a Data Node of HDFS.
It is supposed that each Data Node is responsible for loading of two fibers.

Parquet is a columnar format for HDFS. Columnar format
will speed up later analytic queries. Since analytic queries
usually only access a few data columns, columnar layout can
avoid reading of unrelated columns. The data is compressed to
save disk space. Data sorting and compression will slow down
loading a little bit, however it is worthy when considering the
performance benefit we get later when querying the log data.

HDFS saves the primary replica of a data block into local
disks on priority, and find out two other nodes in the cluster to
store other two replicas. After a data block is written into
HDFS, we record some information about the block into one of
meta data tables - the Block table. Several tuples are logged
into the table according to number of fibers contained in the
data block. Each tuple has the following information: data
block id (Block _id), fiber id (Fiber_id), minimum time stamp
of the fiber (start time), maximum timestamp of the fiber
(end _time), record count of the fiber (record count), and the
logical file name of the block in HDFS (block location).

When the information is registered, it represents that the log
records of these fibers have been loaded into data warehouse.
To avoid duplicate processing of these log records, we need to
register some information in another meta data table - the
Offset table, to manage the restart point of each fiber. The
Offset table contains two columns, one is fiber id, and another
is offset, which denotes that the message queue partition
containing logs of corresponding fiber has been processed to
the location. When the loaders fail and restart, they know
where to resume the puling of log data from each fiber.

E. Discussion: Load Balancing, Fault Tolerance, Data
Transformation and Query of the Data

The number of Data Nodes in a HDFS cluster will increase
or decrease due to expansion of the system or failure of some
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nodes. When the number of Data Node changes, there is a need
to change the mapping from fiber to Data Node as well (change
the Mapping table of meta data store). Meta data is managed by
a meta data server, and status of Data Nodes is managed by a
Zookeeper server. These two servers run on the same physical
node. When the mapping has been changed, the Zookeeper
server will notify related Data Nodes. Data Nodes will pull log
records from Kafka according to new mapping. Having been
pulled but not yet loaded data is discarded.

For example, some node who is responsible of pulling and
loading of log records of fiberl1 and fiber12 fails. Then fiber
11 and fiber 12 are handed over to new nodes respectively. For
fiber 11, the log records pulled by the failed node is discarded
(there is no problem, because the data is not yet loaded into
data warehouse), and the new Data Node will pull and load the
data into data warehouse according to the offset recorded in the
Offset table.

The mapping from fiber to Data Nodes is periodically
readjusted. The objective is to guarantee that the log data is
dispersed onto the cluster. From the perspective of each fiber,
before readjustment of the mapping, the primary replicas of
blocks (log records) of the fiber are written to some Data
Nodes. After readjustment of the mapping, the primary replicas
of blocks of the fiber will be written to some new Data Nodes.
The readjustment of the mapping is called Mapping Shuffle.
Mapping Shuffle help to balance the load of the Data Nodes,
and avoid situations of some Data Nodes become too busy.

Our proposal only considers data staging and data loading.
It assumes that the data coming from upstream data stream or
data files is of high quality. In the scenarios that it is necessary
to transform the data, we can embed data cleaning logic into
the process of organizing the data blocks before writing them
into HDFS.

The log records written to HDFS is organized as blocks,
each block has a HDFS file name. However, logically these
blocks collectively constitute a data table. Hive [3] and Spark
[4] both support some viewing mechanism, through which
multiple files (having the same schema) are seen as one logical
table, on which queries could run against. For example, Spark
SQL Context has a unionAll method, which combines multiple
files and presents them as a logical table as follows.

01 var df: DataFrame = null;
02 for (file <- files)

03 {

04 val fileDf= sc.textFile(file)
05 if (df!= null)

06 { df= df.unionAll(fileDf)
07 1} else

08 { df=fileDf

09 }

10 } // note: sc is a SQLContext object.

III. EXPERIMENTS

A. Experiment Setting

We have conducted experiments on “Renda Xing Yun”
cloud platform. The Kafka cluster is comprised of 3 virtual
nodes, and the Hadoop HDEFS cluster is comprised of 8 virtual



nodes. Each virtual node is equipped with 8 CPU cores and
16GB of main memory. The operating system is CentOS 6.5.
The versions of Kafka and Hadoop are 2.9.1-0.8.2.2 and 2.6.3
respectively. The dataset we use is the Lineitem table extracted
from the TPC-H benchmark, and the volume of data is 3 GB.
We have added a new column to the table to record the
timestamp, at which the tuple is injected into the data staging
and loading pipeline.

B. Experiment Results

The first experiment is to study how Kafka Batch Size
affects the performance of data staging. To guarantee the log
data is sent to Kafka as fast as possible, we have loaded the
data set of 3GB to main memory of a virtual node before
injection of the data. The node connects to other nodes through
a 1000M Ethernet.

Table I lists the times to stage the 3GB dataset with
different Batch Sizes. From the figures we can see that, 16KB
of Batch Size achieves a good enough performance. There is
little use to increase the parameter further.

TABLE 1. THE INFLUENCE OF BATCH SIZE ON THE PERFORMANCE
OF DATA STAGING

Batch Size 4KB 8KB 16KB 32KB

Time to Staging 56.7s 57.9s 56.7s 56.6s

The second experiment is to study how the number of
partitioners affects the performance of data staging. Table II
lists the performances of staging when the number of
partitioners are 1, 2, 3, and 4 respectively. Owing to highly
scalability of Kafka, the performance of data staging is close to
60MB/s, it can be translated to 390,000 tuples/s.

It is unworthy to add more partitioners since the
improvement of performance is limited. To further improve the
performance of data staging, a feasible way is to install disks
with higher I/O performance, such as SSDs.

TABLE I THE INFLUENCE OF NUMBER OF PARTITIONERS ON THE
PERFORMANCE OF DATA STAGING
Partitioner# 1 2 3 4
Performance 57.7MB/s | 58.5MB/s | 59.7MB/s | 59.5MB/s
of Staging

The third experiment is to study the performance of data
loading. We have run the tests for three times. The maximum
loading times, minimum loading times and average loading
throughputs of the 8 data nodes are listed in table III.

Average loading throughput is around 24.7MB/s, it can be
translated to 162,500 tuples/s, which is much superior to the
loading throughput of writing sequentially to a single HDFS
file, i.e. 37,000 tuple/s.

TABLE IIL LOADING PERFORMANCE ON THE DATA NODES
Experiment maximum minimum Average loading
rounds loading time loading time throughput
#1 126.2s 122.2s 24 9MB/s
#2 125.6s 121.8s 24.7MB/s
#3 127.2s 122.5s 24.8MB/s
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C. Query Performance

Although our work is focusing on staging and loading of
log data, however, we also present rudimentary query
performance results of our prototype here.

In Hive and Spark, several files having the same schema
can be loaded as a logical table, which can then be operated on
or joined with other tables. Our proposal has made use of this
viewing capability of Hive and Spark. By loading each data
block (of a log table) as one file into HDFS, we can speed up
loading by parallel processing.

After log data is staged then loaded into data warehouse, it
can be queried. For entity centric queries, such as TPC-H Ql
(query 1), we can use meta data table of Block to filter out
unrelated blocks, only blocks containing relevant data is
scanned, query performance can thus be improved.

The experiment to study performance of entity centric
queries is conducted on the same virtual cluster as the one
used in staging and loading experiments, however we have
increase the volume of data to 100GB. An entity centric query
is composed based on TPC-H Ql, which calculates some
aggregations on the Lineitem table with a time range condition
and a designated customer key (a customer is an entity). The
SQL statement is as follows.

SELECT SUM (quantity) AS sum_qty,

SUM (extendedprice) AS sum_price,

AVG (quantity) AS avg_qty,

AVG (extendedprice) AS avg_price,

AVG (discount) AS avg_disc,

COUNT (*) AS count_order,

MIN (orderkey) AS min_orderkey,

MAX (orderkey) AS max_orderkey

FROM Lineitem

WHERE

custkey = %s AND

messagedate > %s AND messagedate < %s

We have used meta data table of Block to filter out

unrelated blocks, handed over left blocks to Spark SQL for
later processing of above query, without any more
optimizations. The response times are listed in table IV.

TABLEIV.  RESPONSE TIMES OF ENTITY CENTRIC QUERY
selectivity 1% 2% 5% 10%
Response time(s) = 18.9 19.7 23.9 25.7

We achieve less than 20 seconds of response times for
queries with selectivity less than 2%. We believe that after
more advanced optimization techniques such as vectorized
query execution [5] are employed, the response times could be
further cut down.

Worthy to mention is that above results are achieved
without any data caching. We have shutdown Spark SQL and
restart it for each run of the query. We also run the same query
with different parameters without restarting Spark SQL, the
response time of the first run of the query is consistent with
above results, however subsequent runs of the query with
changed parameters achives much faster response times,
varying from 2 seconds to 13 seconds (with a selectivity less
than 10%). It can be explained by the fact that these runs of the
query with different parameters could be partially served by the
data having been loaded and cached in main memory.



D. On Data Freshness

Since the data is loaded as fast as possible, we expect that
recent data will show up quickly in data warehouse for analysis.
Data freshness of the data warehouse could be improved to
MINUTE level. We expect that data coming 15 minutes before
has been ready in data warehouse and could be queried when
the data is continuously arriving with high throughput, which
should be verified by some experiments with real life data sets.

IV. RELATED WORKS

MapReduce [6] has established itself as the de-facto
standard technology for large-scale data-intensive processing in
recent years. [7] and [8] present a scalable dimensional ETL
framework, ETLMR. And it makes use of MapReduce to
parallelize ETL execution to achieve higher performance.
ETLMR has built-in native support for operations on star
schemas, snowflake schemas and slowly changing dimensions
(SCDs). This enables ETL developers to compose scalable
ETL flows with very few code lines. The authors proposed
parallel processing methods for slowly changing dimensions,
including one dimension one task, one dimension all task etc.
They also pinned some dimensional tables in memory to
accelerate lookup operations when processing the fact table.
Their experiment results show that ETLMR has a good
scalability, and it outperforms Pentaho Data Integration by
three times. ETLMR is, however, built for processing data into
an RDBMS-based data warehouse. The throughput of loading
relies on LOAD performance of target RDBMS.

[9] has extended the work of [7] and [8], and proposed a
cloud based ETL framework, CloudETL. Hive is an RDBMS-
like system for data warehouse application on Hadoop with
scalable analytical features. CloudETL has used Hadoop (open
sourced implementation of MapReduce) to parallelize the ETL
execution to process data into Hive. Users define the ETL
process by means of high level operators, and do not have to
worry about the details of MapReduce computing model.
CloudETL has built-in support for star schemas and SCDs.
CloudETL also provides the support of data co-location to
speed up later data queries. Their experiment results show that
CloudETL scales very well and greatly outperforms the
dimensional ETL capabilities of Hive both in terms of
performance and programmer productivity. In general,
CloudETL outperforms Hive loading capability by 3.9 times.

A two-level data staging ETL for handling transaction data
is proposed in [10]. Their method detects the changes of the
data from transactional processing systems, and uses two
staging databases for temporarily storing of data, and to
facilitate the data processing in an ETL workflow. The first
staging database employs the same schema as the one the
OLTP system uses, and finishes the work of identifying data
changes and data transformation. The second staging database
employs the same schema as the one the back end data
warehouse uses, its work is to validating primary/foreign key
relationship, and loading of the data.

Different from above works, our work is to accelerating
data loading of log data for later entity centric analysis, we
don’t consider handling of dimensional tables (we will handle
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dimensional table data loading and consider join optimization
in future work). Secondly, we have use Kafka’s persistence
capability to temporarily store the log data as fast as possible
without data loss. Entity fiber based data partitioning is
performed when injecting data into Kafka, which get data
ready for later parallel loading. Thirdly, we have designed
multi-thread loaders to pull data from Kafka and load data
directly into HDFS in parallel. Finally, the data residing in
HDEFS can by queried by Hive or Spark.

V.

Valuable information is buried in log data, entity centric
real-time analysis of fine granularity of log data help us to learn
recent behaviors of related entities. Such analysis requires that
detailed log data is loaded into data warchouse as fast as
possible without loss. We propose a fast staging and loading
method for log data. We have implemented an entity fiber
based data partitioning and staging method, and a parallel data
loading algorithm, which is based on open sourced tools
including Kafka, HDFS, and Spark. Our experiment results
show that our proposal achieves a good performance, meets the
need of fast staging and loading of log data.

CONCLUSION
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