®

Check for
updates

Towards Real-Time Analysis
of ID-Associated Data

Guodong Jin'2, Yixuan Wang! 2, Xiongpai Qin"2®, Yueguo Chen'2,
and Xiaoyong Du'+?

! School of Information, Renmin University of China, Beijing, China
qxpl1990@ruc.edu.cn
? DEKE Key Laboratory, Renmin University of China, MOE, Beijing, China

Abstract. ID-associated data are sequences of entries, and each entry is
semantically associated with a unique ID. Examples are user IDs in user
behaviour logs of mobile applications and device IDs in sensor records
of self-driving cars. Nowadays, many big data applications generate such
types of ID-associated data at high speed, and most queries over them
are ID-centric (on specific IDs and ranges of time). To generate valuable
insights from such data timely, the system needs to ingest high volumes
of them with low latency, and support real-time analysis over them effi-
ciently. In this paper, we introduce a system prototype designed for this
goal. The system designed a parallel ingestion pipeline and a lightweight
indexing scheme for the fast ingestion and efficient analysis. Besides, a
fiber partitioning method is utilized to achieve dynamic scalability. For
better integration with Hadoop ecosystem, the prototype is implemented
based on open source projects, including Kafka and Presto.

Keywords: Real-time analytics - ID-associated data
Real-time ingestion

1 Introduction

ID-associated data are sequences of entries, and each entry is semantically asso-
ciated with a unique ID. Examples are user IDs in user behaviour logs of mobile
applications and device IDs in sensor records of self-driving cars. Nowadays,
ID-associated data are ubiquitous in many big data applications. They are gen-
erated at high speed, and real-time analysis of them is critical to gain valuable
business insights timely. Take user behaviour analysis in mobile applications as
an example, each time a user clicks inside a mobile application, a log entry with
the user ID recording the user’s behaviours is generated automatically and col-
lected by the vendor. The vendor applies real-time analysis over newly collected

This work is supported by Science and Technology Planning Project of Guangdong
under grant No.2015B010131015, 863 key project under grant No.2015AA015307,
and the National Science Foundation of China under grants No.61472426, U1711261,
61432006.

© Springer Nature Switzerland AG 2018

C. Woo et al. (Eds.): ER 2018 Workshops, LNCS 11158, pp. 26-30, 2018.
https://doi.org/10.1007/978-3-030-01391-2_6



Towards Real-Time Analysis of ID-Associated Data 27

data to identify abnormal user accesses, and study behaviours of a particular
group of users over the latest days for better content recommendations.

In many such cases, ID-associated data come at high speed. Typically, most
queries over ID-associated data are ID-centric — they retrieve and analyze data
of a specified group of IDs over a period of time. To gain valuable insights
timely, the system needs to ingest high volumes of data quickly and execute ID-
centric queries efficiently. ElasticSearch [5], the distributed search engine, builds
inverted indices over data to support real-time searches. However, due to the
high latency of indexing, it cannot support data ingestion in real time. SQL-on-
Hadoop systems like Spark SQL [2] perform well at batch processing, but they
lack the ability of data ingestion. Hive [1] is proven to be a powerful tool for
ETL(extract, transform and load) on HDFS. It converts the ETL pipeline into
a batch of map reduce jobs, which is slow due to frequent reads and writes of
intermediate files.

In this paper, we introduce a system prototype tailored for the real-time
analysis of ID-associated data. It integrates ingestion of ID-associated data with
ID-centric relational processing. To support this, we designed a parallel ingestion
pipeline and a lightweight indexing scheme. The pipeline offers data ingestion
with low latency, and a well-designed in-memory columnar store, enabling effi-
cient relational processing over data being loaded. And the indexing scheme
helps the system avoid a full scan of the relational table. Combined with the
fiber partitioning mechanism, the system provides dynamic scalability. For bet-
ter integration with Hadoop ecosystem, the prototype is implemented based on
an open source messaging system (Apache Kafka [7]), and a popular SQL-on-
Hadoop engine (Facebook Presto [8]).

2 System Architecture

As shown in Fig. 1, our system prototype contains six modules (in gray): Col-
lector, Loader, Indexer, Metadata, Connector and Coordinator.

DATA SOURCES 8
¥ VYV ¥V Y ¥V V¥V ¥V V V¥V l T
COLLECTOR

KAFKA
DATA
ANALYTICAL
SYSTEM
(PRESTO)

INDEXER METADATA

COODINATOR

LOADER

CONNECTOR

HDFS

Fig. 1. System architecture



28 G. Jin et al.

Collector. Collector servers as the front-end of the system, which is responsible
for collecting data from various sources. Data collected are applied to our fiber
partitioning method (details are discussed in Sect. 3), and sent into Kafka with
a one-to-one correspondence between fibers and Kafka partitions. Kafka assigns
each record with a unique offset to allow re-read of data from a specified offset.
We make checkpoints on offsets of loaded data to guarantee data lossless during
ingestion.

Loader and Indexer. Loader ingests data from fibers assigned by Coordinator.
It pulls data from Kafka and writes them into HDF'S after processing. Generally,
data on HDF'S are stored in columnar formats such as ORC [3] and Parquet [4] to
speed up queries. Data pulled from Kafka are applied with user-defined filters and
transformers. Then, data are sorted by their associated IDs and generation time,
and appended into a memory store (details are discussed in Sect.3). Finally,
the memory store flushes data into HDFS as columnar files. In particular, for
data in the memory store, Indexer maintains bloom filters to track existing IDs
and records key statistics, such as min and max values of each column (including
generation time). When data are flushed into HDF'S, these lightweight indices are
embedded into files. To efficiently load and index data, a parallel data ingestion
pipeline is designed, which is described in Sect. 3.

Metadata, Connector and Coordinator. Metadata maintains critical meta-
data for the system, including definitions of relational tables and columns, user-
defined functions, and fiber storage information. When executing queries, reading
tasks are pushed down to Connector to fetch data needed by query engines. Con-
nector is able to fetch data from the memory store and HDFS altogether, and
make use of existing indices to filter useless files. Thus, analytical systems can
be boosted to run queries on both of the most recent data in memory and his-
torical ones on disk. Coodinator monitors all running processes in the cluster,
and coordinates executions of Loaders by dynamically assigning fibers to achieve
good scalability and load balance.

3 Key Techniques

Fiber Partitioning. Our fiber partitioning scheme is based on the consistent
hashing [6]. In ID-associated data, each entry is associated with a unique ID,
and a hash function is applied to get a hash value of the ID. The range of hash
values is split into £k intervals, mapping to k fibers. Due to the possibly uneven
distribution of data, some fibers may contain much data while some may com-
prise few. During data ingestion, Coordinator collects load metrics from Loaders.
When loads are seriously skewed, Coordinator greedily migrates fibers from the
node with the heaviest loads to other ones. Further, fibers can be tuned in fine
granularity to merge and split dynamically. Based on this partitioning scheme,
data are further clustered by their associated IDs and indexed efficiently.

Parallel Ingestion Pipeline. Data pulled from Kafka are maintained as fiber
streams separately, and in each stream data are processed with user-defined



Towards Real-Time Analysis of ID-Associated Data 29

filters and transformers inside a thread. After filtering and transformation, data
are inserted into a sorted buffer. Inside the buffer, entries are ordered by their
associated IDs and generation time. Once the sorted buffer reaches its max size
or user-defined lifetime (elapsed time since the last reset), it appends all data
into the memory store and resets. The lifetime represents the latency of data
ingestion. Data inside the memory store is organized as immutable segments
and ready to be queried by analytical systems. When the memory store reaches
its threshold in size, it flushes segments as columnar files into HDFS. To gain
benefits from sequential disk I/O and avoid 1/O competitions, a single writer
thread is utilized to handle all writing requests.

In-Memory Columnar Storage. Memory store organizes data as segments,
inside which data are clustered by their associated IDs, and stored in a columnar
format to be optimized for cache lines. To reduce memory footprints, lightweight
compression schemes such as run length encoding, bit packing, and dictionary
encoding are utilized to compress segments. With little overhead, queries can
run directly on these lightweight compressed segments. Memory store maintains
storage information of each segment, including the storage level (i.e., on-heap,
off-heap, on-disk) and location (i.e., object reference, memory address, file path).
In-memory segments can be stored on-heap and off-heap based on user configu-
rations. Off-heap storage is recommended by default to avoid GC overheads.

4 Demonstration

The demonstration is set up on a cluster, in which our Collectors are deployed
along with Kafka, and Loaders are distributed with Hadoop and Presto. We
design a data generator to generate records based on the result of joining lineitem
and orders table from the TPC-H benchmark. Besides, we add an attribute,
called generation_time, to identify the generation time of each record. The gen-
erator runs in a streaming manner — records are generated and sent to Collectors
one by one in real time. During the demonstration, a web interface is presented
with detailed information of data ingestion, such as throughput of ingestion and
loads of each node. Also, users can choose queries from our provided query set or
compose some in our web interface. The interface has a query client embedded
to issue queries to the Presto and collect results through JDBC. Our provided
query set consists of ID-centric queries, which are based on TPC-H queries with
time range conditions and designated IDs. The example query' analyzes quan-
tity, price and discount of orders made by customer k from ¢1 to t2. Once a
query is submitted, we can track its execution in our web interface. Our system
prototype is open source on the Github?.

! select sum(quantity), sum(totalprice), min(discount), max(discount), avg(extended

price), count(*) from test where custkey = k and generation_time > t1 and
generation_time < t2 order by linestatus.
? https://github.com/dbiir/paraflow.



30 G. Jin et al.

References

Apache Hive (2011). http://hive.apache.org

Spark SQL: relational data processing in spark (2015). http://spark.apache.org/sql/

Apache ORC (2018). https://orc.apache.org

Apache Parquet (2018). https://parquet.apache.org

Gormley, C., Tong, Z.: ElasticSearch: The Definitive Guide: A Distributed Real-

Time Search and Analytics Engine. O’Reilly Media Inc, Sebastopol (2015)

6. Karger, D., et al.: Web caching with consistent hashing. Comput. Netw. 31(11-16),
1203-1213 (1999)

7. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of the NetDB, pp. 1-7 (2011)

8. Traverso, M.: Presto: interacting with petabytes of data at facebook (2013).

Accessed 4 Feb 2014

A



